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KRYLOV APPROXIMATIONS FOR MATRIX SQUARE ROOTS 
IN STIFF BOUNDARY VALUE PROBLEMS 

BERNHARD A. SCHMITT 

ABSTRACT. Recently, we proposed an algebraic difference scheme, with ex- 
tended stability properties, for linear boundary value problems involving stiff 
differential equations of first order. Here, an efficient approximation scheme 
is presented for matrix square roots, which provides the stabilization of that 
scheme in case of stiffness. It combines the use of low-rank matrix approxi- 
mations from projections onto Krylov subspaces with an accelerated sign iter- 
ation for the matrix square root. The Krylov approximation, being accurate in 
eigenspaces with large eigenvalues, preserves the stability of the scheme, and the 
0(n3) square root computation need be performed only in lower dimension. 
Operation counts and numerical results show that the effort for the numerical 
scheme is essentially proportional to the number of stiff components, but not 
to the norm of the coefficient matrix. Approximation properties of low-rank 
Krylov matrices, which may be of independent interest, are analyzed. 

1. THE SQRT ONE-STEP DIFFERENCE SCHEME 

A standard approximation for the differential equation in the linear boundary 
value problem (BVP) 

u'(x) = A(x) u(x)+ g (x) X E [0 1], U(X) ER, 
Bou(O) + B u(l) = 8, 

is the trapezoidal rule on a suitable grid, 0 = xo < x1 < XN = 1, 

(1.2) [I- lhkAk+1I]yk+ [1+ hkAk]yk = hk gk+1/2, 

Aj := A(xj), hk := Xk+1 - Xk, gk+1/2 := 2[g(xk) + g(xk+1)]. Because of 
stability reasons it is usually necessary to restrict the stepsize, 

(1.3) hk < 2/IIAk+jll, j=0, 1, 

to assure regularity of the matrices (2/hk)I ? A. If the coefficient in the dif- 
ferential equation in (1.1) is "large," IIA(x)ll > 1 , this restriction leads to 
unacceptable small stepsizes in regions where the solution is smooth. This situ- 
ation is usually referred to as "stiffness." In certain cases, however, a relaxation 
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of (1.3) is possible (cf. [2]). In order to avoid stepsize restrictions, the follow- 
ing SQuare Root Trapezoidal scheme (SQRT-scheme), with a parameter co, 
0 < co < 2, has been proposed [17, 18], 

(1.4a) (pc9(-hkAk+1)yk+1- 
(hkAk)yk = hkkk+1/2, 

(1.4b) z+ 2 co + 2 H i Z E coD, 

(1.4c) D:={zeC: Rez#OorIImzI<1}. 

The square root denotes the unique branch with positive real part, i.e., the ma- 
trix W: (02I + h2A2)1/2 is the solution of W2 = -02I + h2A2 with Rep> 0 
for every eigenvalue yu of W. This solution exists uniquely under the as- 
sumption that A has no purely imaginary eigenvalues Al with absolute value 
JAI > co/h, i.e., ht ? coD. The scheme (1.4) is a stabilized version of the trape- 
zoidal rule, which corresponds to the limit co--+ 0, and is unconditionally stable 
(in the absence of purely imaginary eigenvalues), since its coefficient matrices 
#,o(+hA) possess no eigenvalues with nonpositive real part. As a consequence, 
the stability function f(z) := (a.(z)/,w(-z) of this scheme is bounded by one 
from above (below) in the left (right) complex halfplane and has no zeros or 
poles in the finite complex plane. In the usual notation, the scheme is both 
symmetric, f(z) * f(-z)- 1, and stiffly A-stable, f(z) -O 0 (Re z -x -00), 

f(z) -x 00 (Re z -x 00), which is impossible for rational schemes. The con- 
vergence is of second order; for singularly perturbed equations eu' = Au + g, 
0 <e ?< 1 , the global error has the form O(min{h2, Mh}). More explicitly, for 
nonstiff eigencomponents we have an h2-scheme; for stiff components, how- 
ever, the order reduces to one. This situation is ameliorated by the presence of 
the factor e. 

This description states the background for our discussion of the implementa- 
tion of the scheme. In ?2 we discuss the full computation of the matrix square 
root in (1.4) through an optimally accelerated sign iteration. In spite of very 
fast convergence, this procedure, however, is probably too costly for use in a 
difference scheme. In ?3, replacement of the matrix 

(1.5) X:= [a2I +A2]1/2 - aI, a:= co/h, 

from (1.4) by a cheaper approximation is considered. This matrix X provides 
the stabilization of the trapezoidal rule for large eigenvalues. But the change for 
small eigenvalues is only minimal. Thus, a convenient approximation should 
contain large eigenvalues of A with relatively high precision, and small eigen- 
values may be approximated by zero. This leads to replacement of X by a 
low-rank approximation Y X, with the aim of keeping all coefficient matri- 
ces of the approximate scheme 

(1.6) -I+ (Y?A) 

regular. A construction based on Krylov subspaces of A is developed in ?4, and 
several of its approximation properties are presented in ?5. The computational 
effort for these approximations is essentially proportional to their rank. This 
leads to a stable scheme, with a computational overhead to the trapezoidal rule 
only proportional to the local stiffness, i.e., the number of eigenvalues with 
absolute value exceeding the reciprocal 1/h of the local stepsize. This could 
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make this scheme competitive with others suitable for stiff BVP's, e.g., [ 12, 1 1, 
3, 7]. Numerical examples for some turning point BVP's on realistic grids are 
presented in ?6. 

For any real square matrix A we denote its spectrum, spectral radius, and 
symmetric part by ai(A), p(A), and Re A = (A + AT)/2, respectively. Unless 
stated otherwise, the Euclidean vector norm and the spectral matrix norm IIA112 
are used. 

2. AN ACCELERATED SIGN ITERATION 

The square root B1/2 of a matrix B := a2I + A2 is closely related to the 
sign function of this matrix [14]. The real sign function is easily extended to 
the complex plane by defining sign(z) := sign(Re z), z E C\iR. The matrix 
S := sign(B) is diagonalizable, commutes with B, and has an eigenvalue +1 
(- 1), whenever B has an eigenvalue with positive (negative) real part. For the 
computation of B1/2 we consider the iteration [14] 

(2.1) Po:=B, Ro:=I, 
Pk+, := akPk + fkR 1' Rk+1:= akRk +fAkPk, 

k = O 1, 2, ... , with parameters ak, 1Pk > 0 to be chosen later. The simplest 
version uses 

(2.2) ak = Pk 

Convergence properties of this iteration are identical to those of the sign 
iteration, 

(2.3) 
Sk+ := akSk + fkSjX k=O. 1, 2. 

With (2.2), convergence takes place, Sk --' S := sign(M), k oc, if M has 
no purely imaginary eigenvalues. With the iterates Pk from (2.1), the matrices 
Sk := PkW-I = WRk also satisfy (2.3) [17], where W is any square root of B. 
Thus, the Pk converge to the positive square root of B, with sign(B1/2) = I, if 
B has no nonpositive real eigenvalues. The iteration (2.1) has been considered 
in [ 14] with nonoptimal parameters. The optimally accelerated Newton method 
WkWk+I + Wk+1 Wk = ak(B + Wk2) for real spectrum was seen by Albrecht [1] 
to be related to the Wachspress parameters in the ADI-iteration (cf. [22]). The 
construction follows from the observation that the map w(s) := (s + 1/s)/2 
folds the positive real axis around the point 1 such that w(1/s) = w(s). By 
scaling the spectrum after every step to an interval of the form [1 /r, r], r > 1 
convergence is improved. 

Before restating this result, we note the relationship 

(2.4) [A2]1/2 = sign(A) * A, 

which has the practical consequence that for a O 0 the matrix X (cf. (1.5)) 
may be computed by (2.3) instead of (2.1), saving half the computational effort, 
since only one matrix inversion per step is needed. The relevant formulation 
from [1], for both iterations (2.1), (2.3), is 
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Lemma 2.1. Let c(B) E [a2, b2], (A) E [a, b], a > 0, and W := B1/2. 
Define 

ao:= 2(a +b) o ab, 

(2.5) a, k+=1/ 4k+/k k=k= 2k (k>1) 

aXk+1 =1 V4~ak ~+ 1/k ak = 1, 2, ... . 

Then ck ` 1/2, k -x oc, and the iterates of (2.1), (2.3) converge, Pk -W 
Sk -` I, with 

(2.6) a(Pk+l W ), a(Sk+l) E [2ak X 2], k = 1, 2. 

The initial range of the spectrum a = p (S7' ) 1, b = p(So) may be estimated 
by standard means, e.g., weighted norms, from the first iterate and its inverse, 
which is computed anyway. These estimates need not be very accurate, since 
the iteration (2.5), which is closely related to the Gaussian arithmetic-geometric 
mean iteration, shows a very rapid global convergence to 1/2 in log(loge) + 
log(log(b/a)) steps for a relative error criterion e. This follows from the local 
quadratic convergence and the relations 1 > 2ak+1 > \/4; > (2aI )2-k k > 0. 
Thus, the numerical iteration stops in a fixed number of steps for any realistic 
floating point range. In fact, this number only depends on the condition b/a 
of A, resp. B1/2, since l/(ao,6o) = 2(Jb_7a + V/?7E). As an example, the 
following table shows the (theoretical) number of iterations (2.3) necessary to 
satisfy the moderate stopping criterion 1 - 2ak < 10-4 (cf. (2.6)): 

b/a= 102 103... 105 106... 1012 1013... 1025 

k+l= 4 5 6 7 

This accuracy of the square root is sufficient to provide the stabilizing effect of 
the difference scheme. Thus, we will use as computation count 

(2.7) one sign computation = c * n3FLOPS, c 6, 
since one matrix inversion needs n3 FLOPS. One square root computation 
has the double cost, - 12n3, which still is competitive with the Schur method 
[5], since the average for one Schur decomposition alone is estimated to cost 
15n3 FLOPS [10]. However, for a difference scheme, all this may be far too 
much overhead. In the following sections we will show that it often is possible to 
perform the costly sign computation in lower-dimensional spaces RI, m < n. 

The acceleration was designed for real spectrum only. The global convergence 
(in C) for the original iteration with parameters (2.2) follows from the well- 
known identity 

(2.8) (Sk _ I)(Sk + I)'1 = [(So -_I)(So + I)-1]2k 
It may be deduced from, e.g., [22, ?17.5] that the accelerated iteration (2.3) 
produces a rational Chebyshev approximation of degree 2k to the zero function. 
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It has the form 
2k 

(2.9) (Sk - I)(Sk + I)' = J"(S - yj1)(So + Yj)-1 
j=1 

with Yj E (a, b). The global approximation properties of such functions are 
much better than those of polynomials. Every factor in (2.9) is smaller than 
1 in the right complex halfplane and greater than 1 in the left. Hence, the 
iteration still converges if SO has no purely imaginary eigenvalues. In fact, 
convergence deteriorates only slowly if eigenvalues move away from the real 
axis. In the numerical experiments (Example 6.3), after ten unsuccessful sign 
iterations, the existence of nearly imaginary eigenvalues is presumed and the 
stepsize is reduced near the grid point involved. 

3. LoW-RANK APPROXIMATIONS FOR THE MATRIX SQUARE ROOT 

The matrix X from (1.5) has the sole purpose of providing regularity of 
the coefficient matrices (o@(+hA) of the scheme (1.4). The matrix X has the 
following properties. If A is small compared to a = w/h, IAII < a, X is 
very small, too, X = O(jjAjj2/a) O 0. But if A has only large eigenvalues, e.g., 
IIA- I I < a1 , we see that X - [A2]1'2 = sign(A) * A (cf. (2.4)). It is our aim to 
replace X by a "cheaper" matrix with similar properties. 

In this section, we discuss the approximation of X under the assumption 
that an approximate block Schur form of the matrix A is known, i.e., a unitary 
similarity transformation to (2 x 2)-block (almost) upper triangular structure. 
The construction of such a decomposition will be considered in the next sec- 
tion. Let U := (Q, P) E Rnn be a partitioned unitary matrix. In practice, we 
will assume explicit knowledge of the part Q E Rnm only. This introduces a 
partition of A, 

(3.1) A:- UTAU= (C D)' U= (Q P). 

For the following discussion we assume that the eigenvalues of A with large 
modulus are essentially contained in the principle submatrix H. and the ma- 
trices in the second row are relatively small. The case of a vanishing second 
row is particularly simple. In this case, a square root still exists, since zero is a 
nondefective eigenvalue. 

Lemma 3.1. Let C, D = 0 in (3.1), and let H have no eigenvalues with zero 
real part. Then, Y - (A2)1_2 = lim_ Fo(a2I + A2)1!2 is given by 

Y = SA = UYUT, S:=QSQT, 

where 

(3.2) Y:= ( SH S? )= (5 ?) (H 0) S:= sign(H). 
Proof. With (3.1) and K := (a21 + H2)1/2, a simple computation gives 

(3.3) (a2I+A2)1/2- (K (aI +K)-YHB) 
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But K - SH = a2(K + SH)-1. By assumption and Theorem 1.4 of [17] 
there follows IlK - SHII < a2/(2,i) in a suitable norm, where yu 
min{I Re AlI: )A E (H)} > 0. Finally, (aI + K)-1HB = (SH)-1HB + 0(a) = 

SB + 0(a) completes the description of the limit a --+ 0 in (3.3). o 
Remark. The matrix QSQT in Lemma 3.1 is not the full sign matrix of A. 

The approximate square root of rank m < n in the general case will be 
constructed according to Lemma 3.1 by neglecting the (C, D) part of the matrix 
A. The practical construction depends on the specification of Q alone, through 

(3.4) Y:=QSQTAERnn, S:=QSQT, Q = (ql ,* qX)m) E R 

where S E Rmm is the sign matrix in m-space, 

(3.5) S:= sign(H), H:= QTAQ. 

In the approximate SQRT-scheme we attach to all matrices in (3.4), (3.5) the 
subscript k of the matrix Ak = A(xk) from which they are constructed. A cri- 
terion for the choice of their rank will be presented later on. It will depend on 
the local stepsize hk . Since every matrix Ak appears in two steps of the scheme 
(1.4) with general stepsizes hk-l 5 hk, we must allow for approximations with 
different ranks in the steps through [Xk-1, Xd and [Xk, Xk+1 . Within one 
interval, however, matrices must change smoothly in order to maintain consis- 
tency, which, in general, precludes a rank change. Thus, at every grid point we 
have to work with two square root approximations Yk-, Yk+ derived from Ak 
by (3.4), where 

rank(Qk+) = rank(Qk+l_) =: mk 

and the two matrices Qk agree in their first columns, Qk+ = (Qk-, ...) if 
mk>mk-l,resp. Qk- =(Qk+, ..) if mk <mk-l 

Thus, the approximate SQRT-scheme takes the form 

(3.6) [+I+ Yk+- A ] I + Yk+ + Ak] Y 

where 
gk+ 1/2 .= '[I + Sk+]g(Xk) + a [I- Sk+l-g(Xk+1)X 

Looking at the eigencomponents and assuming that the eigenstructure of the 
Y and A matrices are sufficiently similar, we see that (3.6) reduces to the 
trapezoidal rule for nonstiff components. For stiff ones, it corresponds to the 
implicit or explicit Euler scheme according to the sign of the eigenvalue. Thus, 
this scheme looks similar to that of Kreiss, Nichols, and Brown [1 1]. However, 
we want to stress the fact that (3.6) does not work with transformed coordinates 
and the need to keep transformations smooth, which may be difficult to achieve 
in practice (see also Remark 3 in ?4). It is more akin to automatic partitioning 
methods in stiff initial value problems [8, 4, 9]. 

We now consider only one single matrix and drop all subscripts with respect 
to the grid numbering. The matrix Q E Rnm will be constructed by induction 
on m as explained in the next section. One of the most important aspects of 
this procedure is the choice of the rank m. Rather than discussing the ap- 
proximation properties of Y with respect to the full square root X, we will 
consider two important properties of the original SQRT-scheme (1.4) directly. 
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These are the regularity of the matrices p(+hA) and one-sided stability esti- 
mates. We analyze their counterparts for the approximation scheme (3.6). The 
next lemma is merely a motivation for the rank criterion. It is formulated under 
the simplifying assumption that H in (3.1) is diagonalizable. 

Lemma 3.2. With A from (3.1), consider one of the coefficient matrices F 
aI + Y + A of the scheme (3.6). The projector onto the invariant subspace 
of H corresponding to eigenvalues of positive, resp. negative, sign is T? := 
2[sign(H)?I]. Let k be its rank, and T4 := VWT, V, W ERnk, WTV = I 
such that WTHV is diagonal. Let 

(3.7a) p := min{l Re Al: A E a(H)} > 0, 
(3.7b) b:= 1WTB112, C:= fjCV112, d := jjD1j2. 

Then the matrix F is regular if 

(3.8) a >d+ 2bc 

Proof. We drop the subscript on T = 2[S ? I] (cf. (3.5)). With v E Rm, 
W E Rn-m, yT := (VT, WT), the homogeneous system Fy = 0 reads 

(aI + 2TH)v + 2TBw = 0, 
?Cv + (aI ? D)w = 0. 

From the first equation there follows v = Tv . By (3.8), aI ? D is regular, and 
by elimination of w we arrive at 

aTv ? 2THTv - 2TB(aI ? D)-1 CTv = 0. 

Using v = Tv = Vz, z E Rk, and WTV = I, we now have the equation 

(3.9) az ? 2WTHVz - 2WTB(aI ? D)-1CVz = 0. 

If H is diagonalized by the matrix Z, Z - I HZ = diag (Aj)), V and W may 
be assumed to be the columns of Z-1 , resp. ZT, corresponding to eigenvalues 
with appropriate sign. Since ?zTWHVz > #u by (3.7a), multiplication of (3.9) 
by zT leads to 

0 < [a + 2,u - 211 WTBIjjjCVjj/(a - jjDjl)]ljzl 2. 

By assumption (3.8), the term in square brackets is positive, whence z = 0, 
v=0,and y=0. 0 

If the matrix A is not extremely nonnormal, the off-diagonal block B in 
(3.1) should not exceed the main diagonal H in size. Thus, in (3.8), b/1u < 1 
may be expected and the regularity criterion (3.8) simplifies to a > c + d or 
a2 > c2 +d2 , where a = 2/h . This is the motivation for the use of the following 
assumption on the second row of (3.1): 

(3.10) ||(C, D)112 = IIPTA1I2 = 11(I- QQT)A112 < ?. 

The use of the part QTA in approximating the matrix A and the rank crite- 
rion (3.10) were already discussed in [8]. However, in ?4, we will describe an 
implementation which only requires computation of the main part QTA of A. 
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The part (I - QQT)A = PPTA will be called the residual of the low-rank 
approximation of the matrix A. In view of (3.6), (3.8) we will use 3 = 1/h < 
2/h in (3.10) to determine the rank of Q. A rigorous analysis of the effect of 
this rank criterion on the stability of the approximation scheme (3.6) will be 
given now. 

The norm estimates for the transition matrix f(hA) in Theorem 1.4 of 
[17] played a crucial role in the stability analysis there. The function f(z) = 
z + VI + z2 was the stability function of the SQRT-scheme with co = 1. We 
reprove this theorem for the approximate case. But before that, a short explana- 
tion is necessary. For the nonconstant coefficient case, the scheme (3.6) has the 
form T(hk, -Ak+1)yk+I - T(hk, Ak)yk = rk, where the matrices T(h, ?A) are 
derived from different coefficients A(x) . This makes the analysis more difficult. 
However, representing Yk+1 by terms with smaller index j <.k, we get 

T(hk, -Ak+1)Yk+l = FkFk-l * * Fj+1 T(hj , Aj)yj +. 

where the subexpressions F1 := T(h , Ai)T(hi I, -Ai)-I contain only one co- 
efficient matrix Ai. In order to show uniform boundedness of, e.g., Yk+1 in 
terms of yj in the case Re A < 0, coarse bounds suffice for T(hj, Aj) and 
T(hk, -Ak+l)- l, but tight bounds of size 1 + O(h) are needed for 11Fill. This 
is the subject of the next theorem. For ease of formulation we will consider 
equal stepsizes hi = hi-, only. 

Theorem 3.3. Let the matrix A have theform (3.1) and satisfy the bound (3.10) 
with 0 < 3 < h-I, h > 0. Let the matrix Y be computed by (3.4), (3.5), and 
define the transition matrix by 

(3.11) [: 2+ 
A I+ 

[ 
Y 

2 A) 

Then 

(a) Re A < ,uI, u < 0 implies hIFll2 < 2+h3-2hk <1; 
(b) Re A > vI, v > 0 implies ||F 1 112 < 2?h6+2hb <1. 

Proof. Since all estimates are invariant under unitary transformations, we may 
assume U = I. From the assumption in part (a) there follows Re H < ,uI, 
which gives S = sign(H) = -I. Thus, the matrices Y ? A have the form 

Y-A= (2H 2B), Y+A=( ) 

Now, for arbitrary v E Rn, v # 0, we introduce 

():=u:= [I+:f(Y-A)]1v (b) Au= (Hx+B ) 

with x, a ERm, y, b ERn-m. Then, 

/V A\_. -2aA 0vA= 
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and 

jjFvjj2 _Iu + (h/2)(Y + A)u /2 

liVI12 Ilu + (h/2)(Y - A)u112 

(3.12) ilu112 + hyTb + h21lb112/4 
lull2 - 2hxTa - hyTb + h2I1a112 + h211b112/4 

1 -2afl+12+t62/4 = l f, A , ), 
where a := hxTa/l1u112, I? := hyTb/l1u112, 4 := hllall/llull, and q := hllbll/llull. 
The following relations among these variables hold: 

(3.13) lal<?, lflt<j< h6, and a+fl#<hh<O. 

The first two estimates, lal ? a, l0l ? 6, follow from the Cauchy-Schwarz 
inequality, the third, I < h3, is a consequence of (3.10), since lb Il/Ilull < 
II (C, D) 112 ? 3, and the last estimate is equivalent to the assumption Re A < 

iIu, since 

a + fl = h(xTa + yTb)/l1u 12 = huTAu/11u|12 = hUT (Re A)u/IIUII2. 

Evidently, V/ is decreasing in . Thus, the norm of F can be bounded by 

lIF1l2 < max{vf( ,( al, a, ): flI < l < h6, a + fl < hu < 0}. 

By tedious computations we will show in the technical Lemma 3.4 below that the 
last expression satisfies the bound given in statement (a) of the theorem. Part 
(b) may be reduced to (a) by changing the sign of the matrix with #u := -a V. a 

Remarks. (1) The estimates of Theorem 3.3 are similar to those of the original 
SQRT-scheme. Even for the extremal case that the "perturbation" (C, D), 
which is neglected in the construction of the square root approximation Y, 
has size 3 = 1/h, both bounds do not exceed one and still have the form 
IFII < 1 + O(h) (h -+ 0), resp. IIFII < 1/0(hM) (ha -. -xc). 

(2) We have to note that the theorem does not cover the important case of 
a rank change rank(Yk-) # rank(Yk+). This possibility was explained in the 
discussion preceding the definition (3.6) of the approximation scheme and is due 
to the use of (3.10) as the practical rank criterion (cf. ?4) with d_ = 1 /hk-l and 
d+ = 1/hk. The capability to adapt the rank to the local situation, especially 
the stepsize, is a prerequisite for an efficient implementation. o 

Proof of the final estimate in Theorem 3.3 was deferred to 

Lemma 3.4. For A < 0 and e < 1, the function V/ from (3.12) satisfies 

max{v(a, fl, a, 1)1/2: flfI<lj<e, a+fA<A}< 2 + e < 1 

Proof. First, we observe that qi is an increasing function of 2 for a + fl < 0 
and attains its maximum at 12 = e2. Second, the function 

1 + fi + e2/4 
vI(a, f6, a, e) = (1-)-3e/ 
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is increasing in a, since a < A -,8 < e < 1 . Thus, the overall maximum occurs 
on the line a = A -f, -e < f? < e. Now we show 

-fe) = (1~ 1 +fi +e2/4 
'(R~ - 6 ,6 i - ,B ( 1 - 2))fl +fl2 +e2/4 

_(1 +e/2 ~2_ < 1+e/2-) Ifil<e. 

Crossmultiplication of the denominators and the scaling fi = xe, IxI < 1 , lead 
to the equivalent condition 
(3.14) e(l + e/2)2x2 - )({ + e + e2/2)x - A(l - A - e2/4) > O j xf < 1. 
This inequality holds, because sufficient conditions for the polynomial p(x) 
ax2 + bx + c to be nonnegative on the interval [-1, 1] are 

(3.15) a>O, c>O, c2+2ac-b2>0. 

This can be seen from the implication 

c> a2+b2-a 
p(x)?> -al2+b2-x 2)+bx 

> a2+ b21- (1X2)2+x2 >0 (X2 < 1), 

where the Cauchy-Schwarz inequality was used in the main step. Now, for the 
polynomial in (3.14) the conditions (3.15) read 

e(l +e2/2)2 > 0, Z2 _ -(1 - e2/4) > A2 - 3)/4 > 0 

C2+ 2ab-b2 = -3 (2+2e+ 1e2) +2(2 1 + eD2 (1 +e-3 e2) 

- Ne 1+e 2 (le2 >0. 

Here, the nonnegativity follows from the assumptions A < 0 and 0 < e < 1. 0 

The motivation for the specific form of the rank criterion (3.10), 3 = 1/h, 
was essentially heuristic. Theorem 3.3 gives it a sounder theoretical basis, at 
least with respect to stability questions, which is also supported by the numerical 
experiments in ?6. 

4. KRYLOV SUBSPACES 

Recently, the application of the Arnoldi iterative method has been discussed 
in the solution of implicit equations in stiff initial value problems (cf. [9, 6]). 
The salient feature of this iteration is that convergence is fastest in subspaces 
corresponding to eigenvalues of the coefficient matrix with large modulus. This 
is due to the fact that the Arnoldi method solves the orthogonal projection 
of the linear system in a Krylov subspace. Thus the stabilization from the 
implicit method is achieved early in the iteration while the accuracy of the 
scheme is already provided by its explicit part. As a consequence, Brown and 
Hindmarsh report surprisingly low dimensions of the Krylov subspaces in their 
implementation. 
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The situation for the square root scheme (1.4) contains similar features. The 
square root X (cf. ( 1.5)) provides a stabilization of the trapezoidal rule for large 
eigenvalues, although this increases its consistency error. Thus, an approach 
based on Krylov subspaces promises a sensible approximation. But there are 
also differences to stiff initial value problems. For the solution of a linear system 
Ax = b, the inverse A- need only be approximated at one point, A-lb. By 
choosing the right-hand side b as the starting vector in the Krylov process, 
a possible degeneration of this vector with respect to the eigensystem of A 
is not crucial, since the same degeneration will occur in the solution x. In 
the SQRT-scheme (1.4), the algebraic matrix function (o(hA) multiplies the 
unknown vector y . In an iterative environment, e.g., iterative mesh refinement, 
approximations of y might be available in all but the first steps, but these 
might not be reliable for rapidly changing solutions. Hence, since we do not 
(implicitly) know the eigencomponent structure of the vector being mapped 
by (P(hA), we need an approximation of the full matrix X in (1.5), i.e., one 
satisfying a matrix norm estimate like (3.10), not only a pointwise estimate. 

The Arnoldi process generates the column vectors qk of the orthogonal ma- 
trix Q in (3.1) as orthonormal basis vectors of the Krylov spaces 

(4.1) Kk = spanzj1, ., Zk} 
= spanjql, ., qk}, Zk:= Ak-lzl, k < m. 

In consequence of (4.1) the matrix H in (3.1) is upper Hessenberg. The ma- 
trix Q may be obtained from the matrix (z1, ..., Zm) by a QR factorization. 
This can either be based on Gram-Schmidt orthogonalization or on House- 
holder reflections. Both versions have been discussed in the literature (cf. [16, 
21]), where only the matrices Q and H are actually computed in accordance 
with (3.4), (3.5). The Arnoldi method, described by Saad [16], is based on 
a Gram-Schmidt process. However, this algorithm may suffer a breakdown if 
there is a rank deficit in the Krylov subspace, rank(q1, Aq1, ... , Ai-lql) = 
rank(q1, Aq1, ... , Ajql). In cg-iterations, this degeneration is a "lucky break- 
down" [16], since the corresponding cg-iterate is the exact solution already. 
In our context, however, a restart with some (unknown) qj+l l Kj would 
be necessary. Walker [21] proposed an alternative construction of Q using 
Householder transformations. This process additionally provides a basis of the 
orthogonal complement of Kj [10] and no breakdown can occur. Since it is 
only marginally more expensive than Arnoldi's method, this decisive advantage 
led us to choosing the Householder implementation. The full algorithm will be 
described soon. 

Both Krylov processes construct parts of the full transformed matrix UTA U. 
An inspection of the Walker implementation shows that, after the first step 
(j = 1), it is analytically equivalent to the usual Householder reduction to Hes- 
senberg form (of Al = RIARI). The latter was used by Enright and Kamel [8]. 
However, for small ranks it is more expensive than the Walker approach, since 
whole matrices are transformed. Its only advantage would be the possibility to 
check the rank criterion (3.10) or more complicated ones. 

But a slight modification of this criterion allows an implementation with only 
knowledge of A and Q. It relies on the unitary invariance and additivity of 
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the Frobenius norm of a matrix, 

IA 112 :=trace(ATA)= a?. 

i,j 

Since Q in (3.1) is unitary, we are able to satisfy (3.10) by requiring the residual 
bound 

(4.2) 11(I - QQT)AII2 < 11(I - QQT)AII2 = IA112 _IIQTA112 < 32. 

The left products qjTA forming QTA are needed for the computation of the 
matrix Y as well (cf. (3.4)). Thus, this rank criterion (4.2) represents a minor 
computational effort only. It should be expected that the value of the norm 
IA IF, which has to be computed in the first step, is very large in stiff BVP's. 

Thus, in practice, it is advisable to scale the coefficient matrix in order to min- 
imize this norm. This should also improve the performance of the Krylov 
approximation. The EISPACK subroutine BALANC [19] may be easily modi- 
fied to compute a diagonal similarity transformation of A with nearly minimal 
Frobenius norm. 

We now give the formal description of the construction of one approximate 
square root. There is a notational difficulty in the trivial case m = 0, i.e., 
IA IF < 3, where it is understood that the algorithms produce Y = 0 with H 

and Q undefined. 

Algorithm 4.1. Computation of the Krylov-Approximation Y, (3.4), (4.1) with 
rank criterion (4.2), using Householder reflections R := I- 2uT, u lUll2 = 1. 

1. Choose q1, Ilql I2 = 1, RI such that RlqI = el. 
Compute ro:= IA 12, let j:= 0. 

2. If rj < 32 then go to Step 5. 
3. [21] Let j:= j+ 1, wj:=Rj... RAqj. 

Choose Rj+I such that (Rj+l W)Tek = 0, k > j + 1, 
i.e., Rj+I ... RI(q1, Aq, ...,Aq) is upper triangular, 
qj+l := RI . Rj+lej+l . 

4. rj := rj- - I1qJTAII2. 
Repeat with Step 2. 

5. Let m =j, U :=RI Rm, Q:= (q,..., qj), He1 Rj+Iw 
j = 1, ...,m. S:= sign(H), Y:= QS(QTA). 

Remarks. (1) The algorithm uses the matrix A only via products Aq and qTA. 
Thus, sparseness properties of the coefficient matrix may be easily exploited. 

(2) The computation of the left products qTA is not necessary for an al- 
most symmetric matrix A. In this case the principal submatrix H = QTAQ 
contains the essential information, and in place of Y from (3.4) the simpler 
square root approximation X - Q(SH)QT, SH = (H2)1/2 may be used. The 
corresponding rank criterion for the algorithm is IA 112 - IIQTAQII < 62. For 
general matrices, however, this criterion leads to much too large ranks (usually 
m = n), since the submatrix B = QTAP often is of the same magnitude as H. 

(3) Considering neighboring points on the grid, the square root approxima- 
tion Y = Y(x) must depend smoothly on x, at least within one subinterval, 
in order to preserve the consistency of the approximation scheme (3.6). This 
could be expected from Gram-Schmidt, since it is a deterministic algorithm 
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without branching. All terms depend continuously on A and the initial Krylov 
vector ql in the case of nondegeneracy. But the sign decision involved in stable 
Householder reductions may introduce discontinuities into H and Q. How- 
ever, different choices correspond to different similarity transformations of H 
with unitary diagonal matrices. But these transformations are again (implicitly) 
applied in Step 5, Y = Q * sign(H) . QTA of Algorithm 4.1, providing smooth 
dependence of Y on A and ql . 

In estimating the computational cost of Algorithm 4.1 we rely on the results 
of ?2 and count the sign computation in m-space with 6m3 FLOPS. In Step 
5 of the algorithm, we can exploit the fact that the rows of QTA have already 
been computed in Step 4. For dense matrices the highest-order terms of the 
computation count are mn2 + 2m2n - 2m3/3 FLOPS in Step 3 and mn2 in 
Step 4. The two matrix multiplications Q(S(QTA)) in Step 5 need mn2 + M2n 
FLOPS. Thus, if Algorithm 4.1 produces a rank-m approximation H = QTAQ 
which satisfies the assumptions of ?2, the computation count for the Krylov 
approximation Y is 3mn2 + 3M2n + 16M3 FLOPS. The Arnoldi process [16] 
would be slightly cheaper in Step 3, with an overall count of 3mn2+2M2n+6M3 
FLOPS. But since it runs the risk of a breakdown (resp. numerical instability) 
in the case of a (nearly) degenerate Krylov space, we opted for the Householder 
version, Algorithm 4.1, which is used in the numerical experiments. 

Now, we are able to make a realistic assessment of the approximate SQRT- 
scheme. The numerical solution of a two-point boundary value problem requires 
the solution of a linear system with staircase matrix. If Gaussian elimination 
is used, the computational effort is 4n3 [20] per grid point. Thus, on any 
subinterval of the grid for, e.g., m < 0.3 * n, the approximate square root is 
cheaper than the elimination of the corresponding part of the linear system. 
In this case the SQRT-scheme is more efficient than the trapezoidal rule if the 
latter needs a subdivision into two or more subintervals for stability reasons. 
Further, it should be kept in mind that the rank m decreases with the local 
stepsize. On realistic grids, which concentrate points in layers, the mean value 
of the matrix ranks on the grid is fairly low (see ?6). But this overhead provides 
a scheme with the original stability properties of (1.4), which allows for reliable 
adaptive grid placement procedures [18]. 

5. CONVERGENCE PROPERTIES OF KRYLOV APPROXIMATIONS 

The algorithm of the last section chooses the rank m such that the residual 
norm of the matrix A satisfies the rank criterion (3.10). Thus, the regularity 
requirements of Theorem 3.3 are met by construction. Still, it is interesting to 
relate the performance of the Krylov approximation to the eigenstructure of the 
matrix A. From [15] it follows that any particular dominant eigenvalue is well 
represented in H for increasing rank mr. Thus, the approximate SQRT-scheme 
has no stability problems. However, for eigencomponents contained in Y, the 
scheme reduces to the implicit or explicit Euler scheme with order one (see ?3). 
Thus, it is important to ensure that no small eigenvalues are contained in Y, 
since this would produce large errors in the solution of the differential equation. 
For this reason .we now consider estimates for the residual norm 11(I - QQT)A 112 
under the assumption that there exists a gap between the absolute values of the 
largest m and the remaining eigenvalues. If this gap is sufficiently large, under 
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suitable regularity assumptions on the Krylov basis, then Theorem 5.1 shows 
that the criterion (3.10), (4.2) produces the correct rank m if the upper limit 
3 lies somewhere in this gap. The objective of this analysis is similar to that of 
Bjorck [4], however we do not use asymptotic estimates for the QR iteration, 
but concentrate on the initial situation after reduction to Hessenberg form. 

To be explicit, we consider the matrix A to be in block Schur form, 

(5.1) A ( L N) 

with large eigenvalues contained in the upper (m x m)-block LI and small ones 
in L2. The gap between both sets of eigenvalues is assumed via the inequality 
lILT liii L2I < 1 . Then A is transformed to block diagonal form by the matrix 

(5.2) (0I ) LIM-ML2= N 

[10]. It is shown in the next theorem that the residual of the Krylov approxima- 
tion of the same rank m exceeds its minimum, IlL2 II, by a multiple of a certain 
condition number Km. This number will be estimated in a later lemma, using 
the explicit eigenstructure of LI . There is a slight convenience in assuming 
z, = Azo0. We denote the space of polynomials with degree k or less by 7rk . 

Theorem 5.1. Let the matrix A be in block Schur form (5.1) with blocks L1 E 
Rmrxm, L2 E R(n-m)x(n-m) satisfying 

(5.3) JIL- l 1< y- , l IL2 11 < Y2, JIL-'lNII < v, 

and assume Y2/Y'I < 1 . Let Q E Rnm be constructed by (4.1) from the Krylov 
vectors Zk := Akzo, k := 1, ... ., m, which may be partitioned in the same way 
as A, ZT = (XT, yT). Assume that the minimal polynomial of the leading bock 
L1 has full degree m, and that the vector xO* xo+Myo, with M from (5.2), is 
nondegenerate, i.e., has a nonzero component in every eigenvector and principal 
vector of L1 . Then the number 

(5.4) Km(A, zo) := max(Ilp(L2)yoIIIIlp(Ll)xo*ll: P E 7tm-1) 

is finite and, with constant c2 := 1 + v2/(1 - Y2/Y1 )2, the residual satisfies 

(5.5) I1I(I _ QQT)AII < IlL211[1 + C2Km(A, zo)]. 
Proof. By assumption, no polynomial p E tm-1 satisfies p(LI)xO* = 0. Hence, 
Km in (5.4) exists. A standard argument for Krylov approximations is the 
identity QRm = Km = {p(A)zI: P E rm-l}. Now, for arbitrary z E Rn, 
lz II = 1, the matrix residual satisfies 

(5.6) ll(I - QQT)AzII2 = min{llAz - ull2: u E Km} 
= min{IIA[z - p(A)zo]112: P E 7tml } 

By assumption (5.3) the matrix M exists and can be bounded by 

(5.7) IIMII < v/(l - Y2/Y1), 

since M is the fixed point of the contractive map X -- LT (N + XL2). Now 
it is easy to see that the following representations are valid: 

(5.8 = L, k., I . = Lkx* - MrkyO k = 1 M 
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Thus, a linear combination E akZk = p(A)Azo, P E 7lrn,, of the Krylov 
vectors has the two components 

m m 

E akYk = L2P(L2)Yo, E akxk = Llp(LI)xo* - ML2p(L2)yo. 
k=1 k=I 

Now we set zT - (XT yT) and construct an upper bound for the minimum in 
(5.6) by the choice of a special polynomial. Let q E 7m-1 satisfy q(LI)xo* = 
r := x + L-1Ny. This polynomial exists, since Km in (5.4) is finite. Since a 
polynomial is a linear expression of its coefficients, we have 

(5.9) J{jq(L2)yO11: q(LI)xo* = r} 
< maxIllp(L2)yOII: Ijp(Li)xO* I = 1, P E 7rm-.1 }IlrII = KmIlrII. 

For the polynomial q, the norm in (5.6) is 

IIA[z - q(A)zo] 12 = JAML2q(L2)yo 112 + IIL2[Y - q(L2)yo]I12 

< [IjL2yj1 + (1 + jj1Md2)1/2jIL2q(L2)yOlj]2 
< 11L2112(ilyll + CKmIjrII)2, 

with the constant c from (5.5), by (5.7) and (5.9). The estimate is completed 
with I1rl < (1 + v2)112 < c, since IjzII = 1. 0 

Remarks. (1) The term Km in (5.4) describes the conditioning of the Krylov 
basis with respect to a uniform approximation of the matrix A. It is important 
to note that this condition depends linearly on the ratio ljyOll/lIxO + Myol of 
the two components of the initial vector zo. Thus, for nondegenerate xO and 
IIYoII -- 0 ?, IzoII = 1, the Krylov process produces the exact block Schur form 
of A. 

(2) The norm ratio jjyOjj/jjx0* j can be improved in practice by performing 
preiterations, zo Ajz'/llAjz'll, j > 0. Every such iteration decreases the 
condition Km by a factor Y2/Y1 < 1, since, e.g., 

Xl = X1 + My, = (LIxo + LIMyO - ML2yo) + ML2yO = LlxO* 

(see (5.2)). In fact, by using zI = Azo as the first Krylov vector, we already 
eliminated the impact of very small eigenvalues (e.g., zero). In the numerical 
implementation, this single preiteration will be used, at the least. 

The following lemma contains an estimate of the global Krylov condition 
number Km under the simplifying assumption that the leading block L1 has 
only simple eigenvalues. However, we note that Km may still be finite for 
multiple eigenvalues if their geometric multiplicity is one. 

Lemma 5.2. Under the assumptions of Theorem 5.1, let the matrix L1 have 
the diagonal form L1 = V1 diag (Aj) V with simple eigenvalues, and let = 

* M)T := VXO* be such that 

(5.10) d>=min 0.H Ai1Ai- 1:i= 1, * m >0 
i34i 

Then 
Km(A, zo) < d 1 IIyoII1' IIVII(1 + Y2/Y1) . 
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Proof. Recalling (5.9), with t E Rm, I1tjI = 1, we consider the interpolation 
problem t = p(L1)xo = V-I diag (p(Aj))4, P E rmI, i.e., 

p(li) = ri/4i, i = 1, ..., m, T = (Ti, ..., Tm) := Vt. 

Denoting by bi(x), i = 1, ... , m, the Lagrangian basis polynomials associated 
with the points AI, ... , A- we get the following expression for the numerator 
in (5.4): 

m 

IIp(L2)YoII = ZEb(L2)yoTi/gi 

< max{Ijbj(L2)II/I~iI: i = 1, ..., m}IjyoIIIlTzIvjH. 

The explicit representation of the Lagrangian polynomials now leads to 

hIb1(L2)I1IiI ? 71 IlL2 - Ajll/ lij - AiAjI) 
jqsi jqsi 

< (11L211/lVminl + 1)'-Id. 

The assertion finally follows from the observation IhI T I II VI, ItII = 1. 0 

The Krylov condition number introduced in Theorem 5.1 allows an easy 
description of several other properties of the Krylov approximation of A. One 
is the angle, resp. the distance, between the dominant invariant subspace of A 
and the Krylov space Km. 

Lemma 5.3. Under the assumptions of Theorem 5.1, denote by Q2 := E1Rm, 
ET := (Im, O)T, the dominant invariant subspace of the matrix A. Then the 
angle i between Qi and Km satisfies 

sini= dist(Ol, Km) - IIE ET QQT11 and cosi= II(E TQ)-111- 

(cf [10, ?2.4]), where 

(5.11) tanO < Km(A, zl) 
l -CKM (A,zi)' 

if 1 - CKm(A, zi) > 0, with c := V/(l - Y2/Y1). Note that Km(A, zi) < 

(Y2/Yi)Km(A, zo). 
Proof. With E2 := (0, Inm)T ,the matrix Q has the components Qj:= EjTQ, 
j = 1, 2, where Qi is square and 11Q2 11 = sin i [ 10]. If I sin 01 < 1, by virtue 
of I = QTQ = QTQi + QIQ2 there follows 

11Q2QT 12 = P(Q2(I - QTQ2)-lQT) 

((I _(J T - =Q sin 2 io = P(( 2 QQ2)- Q2Q2) = sin 2 o} 

i.e., I Q2QV1 1I = tan i. Since Q is the unitary factor in the QR-decomposition 
of the Kryjov matrix, 

Z :=(Zl,. Zm) z-)( 1Z Z2) Q R, RERmm, 
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where Z1 = (xI, ..., Lj-'x*), Z2 = (yi, ..,L~'-lyl) (cf. (5.8)), xl 
xi + My, , we have 

Q2Q11 = Z2(ZI - MZ2)-= Z2ZV1 (I - MZ2Z 1) 1 

With the estimate (5.7), IIMI < c, the assertion follows from 

max Z2Z1 :x E RI4=max IIZ2V II Rm} Km(AZi). 
l xii JlI iIIZII 

The relation between Km (A, zi) and Km (A, zo) has been discussed in Remark 
(2) after Theorem 5.1. E 

The following corollary shows that the leading block H in (3.5) approximates 
LI (up to unitary transformations) and, hence, is nonsingular for small enough 
i. This has the practical consequence that the sign computation needs fewer 
iterations for sign(H) than for sign(A), since cond(H) < cond(A) (see ?2). 

Corollary 5.4. Under the assumptions of Theorem 5.1, there exists a unitary 
(m x m)-matrix V such that H = QTAQ satisfies 

IIH - VTLI Vii < sinO(IINII + 211L 1| tan(0/2) + IlL211 sini). 

The angle i can be estimated by (5.1 1). 
Proof. With the notation of Lemma 5.3 we may write A = El (LIET + NET) + 
E2L2E2T. This leads to 

QTAQ - VTL1 V = QTEILIETQ - VTL1 V + (QTEIN + QTE2L2)E2TQ 

= (QTE1 _ VT)LIETQ + VTL1(ETQ - V) 

+ (QTE1 N+ QTE2L2)E2TQ - 

Finally, we use IIQTE211 = sinO and IIQTEiII < 1, and choose VT as the 
orthogonal factor in the polar decomposition of QTEI . Then VQTEI is sym- 
metric, nonnegative definite and 

III_ VQTEI 11 = 1 -Amin( VQTEi) = 1 - cos i = sin i * tan(0/2) 

(cf. Lemma 5.3). El 

In Lemma 5.2 we saw, as was to be expected, that the accuracy of the Krylov 
approximation with fixed rank m depends crucially on the eigenvalue separa- 
tion in the leading block LI and the presence of corresponding eigencompo- 
nents in the starting vector zo. If dominant eigenvalues are clustered, or zo is 
degenerate with respect to one of these eigenvalues, the procedure of ?4 will end 
with a rank (much) larger than m, even if Y2 < a < Y I. While the clustering of 
eigenvalues is beyond our scope, we briefly discuss the choice of zo, resp. z1 . 

A "good" starting vector z1 should contain only small components cor- 
responding to small eigenvalues, while dominant eigencomponents should be 
present with equal magnitude. In the original approach of Enright and Kamel [8] 
a global approximation of the matrix A was also constructed. An improvement 
was achieved by an a priori pivoting procedure, which permutes the dominant 
rows or columns of the matrix to the first position. In the Walker formula- 
tion (Algorithm 4.1) a similar effect is possible by the choice z1 = ql := ek, 
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where ek is the unit vector with the index of the dominant row. Other a priori 
constructions of the first vector z1 are obvious. The simplest examples are 

(5.12a) z1 := Aek, with IIAekII = max{jJAe1JJ: i = 1, ... , 

(5.12b) eTzi:=IleTAlI, i=1,..., n. 

However, we have to recall that the vector z1 must depend smoothly on the 
point x in the interval [0, 1] (see the discussion before (3.6)). Evidently, this 
is not the case with (5.12a). The rule (5.12b) appears to be a better choice, es- 
pecially if the 12-norm is used. Unfortunately, it leads to a degenerate starting 
vector in some simple cases. For instance, at turning points, coefficient matri- 
ces often (see ?6) contain a submatrix of the form (A A), I0i ? 1, with the 
eigenvalue pair il. Here, (5.12b) produces the exact eigenvector correspond- 
ing to the eigenvalue +A , which gives a degenerate Krylov space of dimension 
1. On the other hand, (5.12a) gives z1 = Ael or zi = Ae2 which, being sums, 
resp. differences, of the dominant eigenvectors, are optimal choices. Hence, we 
are not able to offer a satisfactory rule, or heuristics, for the construction of 
the starting vector z1 . In the experiments of ?6 we used a constant vector z' 
having no obvious degenerations (e.g., constancy, zero components, symmetry), 
namely (ej, z') := j(n + 2 - j), j = 1, ... , n, with one or two preiterations 
zi := Aiz', j = 1, 2. Evidently, the question of a careful choice of the starting 
vector, resp. the number of preiterations, needs further investigation. 

6. NUMERICAL EXAMPLES 

Since this paper is concerned with the implementation of the SQRT-scheme 
for higher dimensions, we discuss three examples with dimensions n = 16, 4, 
and 8. A discussion of the computational expense of the scheme only makes 
sense under realistic circumstances, which means on a practical grid being coarse 
in those parts of the interval where the solution is smooth and concentrating 
points in boundary and interior layers. For this reason we rely on the procedure 
described in [18] for the mesh generation. The mesh is constructed adaptively 
from an initial, equidistant, grid by inserting additional points in all subintervals 
where a scaled estimate of the local error exceeds a prescribed bound. Stepsize 
ratios are restricted to negative powers of 2. 

The first example contains no serious difficulties, but its dimension and ex- 
plicit construction allow us to study the dependence of the rank of the Krylov 
approximation on the number of stiff eigenvalues in the coefficient matrix. The 
subsequent two examples are more difficult, since they have turning points. 

Example 6.1. The Hadamard matrices Vn , n = 2k, defined recursively by 

V2m = 21/ -V m )' VI = 1, 

are symmetric and unitary. Then, T(x) cosh(x)I + sinh(x) V , x e R, satis- 
fies T(x)-I = T(-x) and T'(x)T(x)1 - T(x)-1 T'(x) = Vn . Substitution of 
the new variable u(x) := T(x)y(x) in the simple equation y' = Dy + f with a 
real, constant, diagonal matrix D, yields the equation 

(6.1) U/ = A(x)u + g, A(x) = T(x)DT(x)-' + Vn, g = T(x)f, 
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with explicit solution u = T(x) exp(xD)a + * -, a E Rn. Since A is similar 
to the symmetric matrix D + Vn , the eigenvalues of A and D differ by 1 at 
most. We take n = 16 and let the entries of D depend on two parameters 
rE{0,...,n} ande>0, 

D = D(e, r) = diag (di), 
(6.2) diI (21 - n)3, 12i- n1< n - r, i=1, n. 

I l(2iln - 1)3/e, 12i - nj > n - r,' -' 

Thus, the largest kinematic eigenvalue is always 1/E (r > 0), but the number 
of stiff eigenvalues is only r, if r is odd. Boundary conditions and inhomo- 
geneity are transformed from ui(O) = yi(O) = 1 (i < 8), yi(l) = 1 (i > 8), 
and f7 := d7 * exp(-x), fs := 0 (i $ 7). Thus, there is one boundary layer 
at x = 1 for r = 1 and two at both ends for r > 1 . The results of runs with 
e = 10-6 and the sequence r = 1, 3, ..., 15 are shown in Table 1. In this 
example, two preiterations of the initial Krylov vector were necessary, and the 
sign computation needed seven iterations at most. The mean value of ranks 
on the final grid is denoted by 7mi; No is the number of intervals where rank 
zero (i.e., the trapezoidal rule) was used. The final mesh is characterized by its 
size N, and the number NL of points in the layers, i.e., within 0.01 distance 
of x = 0 or x = 1. The error tolerance was 0.01, the exact errors lie below 
0.93. 10-2. The numbers clearly show that the rank of the Krylov approxima- 
tion is indeed essentially proportional to the number of stiff eigenvalues of the 
coefficient matrix A, and the number of intervals with rank zero plays only a 
minor role. 

TABLE 1 
Example 6.1, e = 10-6, mean rank and mesh parameters 

r 1 3 5 7 9 11 13 15 

mff 1.4 2.5 3.9 4.7 5.2 6.0 6.2 8.0 

No 17 33 35 47 57 47 87 0 

N 114 156 154 176 172 202 244 196 

NL 43 90 92 102 129 161 205 167 

Example 6.2. Dimension n = 4, e > 0, interval [-1, 1]. The equations 

eY"/ +xy' - y = -(67r2 + l) cos 7rx - 7rx sin 7rx, (6.3) V" - 2v'- 3v =- - xy' 

are transformed to the variables u(x) = (y - xv, y, - xv' V, v,)T. Boundary 
conditions are u1 (? 1) = u3(? 1) = 0, and the resulting coefficient matrix is 

0 1 -1 0 

A(X)*( 1 /E - X -X/8 + X2 X _ X2-3X -x 2/ - 1 -2X+X3 
A .x):=-0 0 1 1 

i 1 -x x+3 2-x2 / 
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It has two large and two small eigenvalues. A turning point exists at x = 0, 
where the solution y(x) shows a cusp and y'(x) a jump. The explicit solution 
is known. Table 2 contains the results of runs, where the stiffness parameter e 
varies between 10-2 and 10-9. The notation is the same as in Table 1, where 
NL now denotes the number of meshpoints near x = 0. The error criterion, 
10-2, produced errors below 1.03* 10-2. Again, seven sign iterations were 
necessary, at most. The scheme was successful with one preiteration in the 
Krylov process, except in the case e = 10-8, where two were needed. The 
numbers in Table 2 show that the mean rank 7mf increases very slowly with 1 /e 
and stays well below two, the number of stiff eigenvalues. 

TABLE 2 
Example 6.2, mean rank and mesh parameters 

6 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 

7mf 0.72 0.78 0.76 0.76 1.07 0.98 1.21 1.28 

No 16 14 22 30 28 26 30 46 

N 56 64 92 116 152 162 236 272 

NL 1 1 9 30 50 50 72 94 

Example 6.3. The Orr-Sommerfeld equations describe the temporal stability 
of plane parallel flow in a channel. It is a complex-valued eigenvalue problem 
for the wave velocity c and the factor (a in the stream function 0(x) 
exp(ia(y - ct)), i2 = - 1; for Poiseuille flow it reads 

M:= -d2/dx2 + a2 

(6.4) M2(o + iaR{(1 - x2 - c)Mo - 2P} = 0, 
o'(0) = 0, o"'(0)=0 = v(1) = O '(1) = 0. 

By introduction of i := Mg, 0 := U1 + iU2, y/ := U3 + iU4, Uj+4 := Uj> 
i = 1, ... , 4, (6.4) is reduced to a first-order eigenvalue problem of dimension 
8. If an eigenvalue c is known, a BVP (1.1) may be obtained by replacing 
one of the homogeneous boundary conditions (e.g., ul (0) = 0) by a norming 
condition (e.g., uI(0) = 1). We use the values R = 106, a = 1, with the 
eigenvalue c = 0.066592523-0.013983266*i from [13]. The coefficient matrix 
has two groups of eigenvalues with four-fold symmetry +Aj, ?~j, j = 1, 2, 
which move near the diagonals (1 ? i)R, the smaller group coming very close 
to the imaginary axis. There is a layer near x = 1. 

A run with an error criterion of one percent ended with a mesh of 390 inter- 
vals and an error estimate of 0.37 percent. The neglected boundary condition 
was almost satisfied with U5(0) - - 10-5. One preiteration was sufficient. The 
final mesh consisted of 55 subintervals on [0, 0.9] with a Krylov approxima- 
tion of rank 4. The refinement in this part was triggered by the device explained 
at the end of ?2 to avoid almost imaginary eigenvalues. After that, the number 
of sign iterations was again seven. On [0.9,1], the rest of 335 intervals was 
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concentrated with Krylov rank 0, only 41 points within 10-2 of x = 1. This 
concentration might be due to the fact that the solution shows several oscilla- 
tions in this interval, which may be difficult to approximate with a low-order 
scheme. 

In this paper we did not only discuss the computational expense of the par- 
titioned, approximate SQRT-scheme (3.6), but also its stability. In a second 
kind of test we investigate the stability and accuracy of the Krylov approxima- 
tions. The validity of the heuristic argument following Lemma 3.2, which led 
to our rank criterion (3.10), is checked by computing the eigenvalues Ai of the 
coefficient matrices in (3.6) with minimal real part, namely 

(6.5) RM:= h minfRe Ai(Y + A), Re Ai(Y - A): i = 1 n}. 

If RM is greater than -1 everywhere, all matrices of the approximation 
scheme are regular. However, it is also of great interest to see how far the eigen- 
structure of the coefficient matrices is deformed by the Krylov approximation. 
It is difficult to assess this deformation, but a comparison of the eigenvalues 
of the matrices (Y + A)/2, (Y - A)/2 and A might be an indication. Since 
(A + Y)/2 and (A - Y)/2 add up to A, this should also be the case for their 
spectra, if Y is a good approximation to X and (almost) commutes with A. 
This might be checked by the relative difference 

(6.6) DM:= max { nl(A)2[I(A+Y)+ kI(AY)]I:Il1 } 

for suitable permutations (ji), (ki). 
These eigenvalue bounds were computed for the turning point problems 6.2 

and 6.3. But it is not very instructive to display detailed numbers, since there 
seems to be no regular behavior. We just note that for the runs of Table 2 the 
overall minimum for RM was -0.5082 on all meshes. This shows that the 
approximate scheme is stable. The eigenvalue difference had a smaller bound 
on the final grids, DM < 0.207, than on the intermediate meshes, where 
DM = 0.402 was reached. An eigenvalue perturbation of 20 percent could 
be an indication of unacceptable deformations of solutions; in the presence of 
an eigenvalue spread of 109, however, these numbers may not be too bad. Still, 
there is probably a need to develop a better estimation of the quality of Krylov 
approximations. The results for the Orr-Sommerfeld equation, Example 6.3, 
are better. Since a brute-force search for optimal permutations in (6.6) is very 
time-consuming, the numbers are given for the final grid only. Here, RM was 
never smaller than -0.11 and DM did not exceed 0.033. 

Computations were performed on the IBM 4381 of the University Computing 
Center at Marburg in double precision. 

CONCLUSION 

We have shown that it may be possible to approximate the SQRT-scheme 
through a partitioned scheme, which preserves many of its original stability 
properties. The cost of this implementation is not determined by the norm 
of the coefficient matrix in the differential equation, but by the number of stiff 
components only. There are open questions concerning the choice of the Krylov 
starting vector or the number of preiterations. This question is closely related 
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to an estimation of the accuracy of Krylov matrices with respect to the eigen- 
structure of the original matrix. 
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